Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 871: 161860, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758699

RESUMO

Biochar application to soil has the potential to affect soil and vegetation properties that are key for the processes of runoff and soil erosion. However, both field and pot experiments show a vast range of effects, from strong reductions to strong increases in runoff and/or soil erosion. Therefore, this study aimed to quantify and interpret the impacts of biochar on runoff and soil erosion through the first systematic meta-analysis on this topic. The developed dataset consists of 184 pairwise observations for runoff and soil erosion from 30 independent studies but 8 of which just focused on soil erosion. Overall, biochar application to soil significantly reduced runoff by 25 % and erosion by 16 %. Mitigation of soil erosion in the tropics was approximately three times stronger (30 %) than at temperate latitudes (9 %); erosion reduction in the subtropical zone was 14 %, but not significantly different from either the tropical or temperate zones. Fewer reported field observations for runoff resulted in larger confidence intervals and only the temperate latitudes showed a significant effect (i.e. a 28 % reduction). At topsoil gravimetric biochar concentrations between 0.6 % and 2.5 %, significant reductions occurred in soil erosion, with no effect at lower and higher concentrations. Biochar experiments that included a vegetation cover reduced soil erosion more than twice as much as bare soil experiments, i.e. 27 % vs 12 %, respectively. This suggests that soil infiltration, canopy interception, and soil cohesion mechanisms may have synergistic effects. Soil amended with biochar pyrolyzed at >500 °C was associated with roughly double the erosion reduction than soil amended with biochar produced at 300-500 °C, which potentially could be related to the enhancement of hydrophobicity in the latter case. Our results demonstrate substantial potential for biochar to improve ecosystem services that are affected by increased infiltration and reduced erosion, while mechanistic understanding needs to be improved.


Assuntos
Ecossistema , Erosão do Solo , Água , Solo
2.
J Environ Manage ; 334: 117478, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796191

RESUMO

Wildfires usually increase the hydrological and erosive response of forest areas, carrying high environmental, human, cultural, and financial on- and off-site effects. Post-fire soil erosion control measures have been proven effective at mitigating such responses, especially at the slope scale, but there is a knowledge gap as to how cost-effective these treatments are. In this work, we review the effectiveness of post-fire soil erosion mitigation treatments at reducing erosion rates over the first post-fire year and provide their application costs. This allowed assessing the treatments' cost-effectiveness (CE), expressed as the cost of preventing 1 Mg of soil loss. This assessment involved a total of 63 field study cases, extracted from 26 publications from the USA, Spain, Portugal, and Canada, and focused on the role of treatment types and materials, and countries. Treatments providing a protective ground cover showed the best median CE (895 $ Mg-1), especially agricultural straw mulch (309 $ Mg-1), followed by wood-residue mulch (940 $ Mg-1) and hydromulch (2332 $ Mg-1). Barriers showed a relatively low CE (1386 $ Mg-1), due to their reduced effectiveness and elevated implementation costs. Seeding showed a good CE (260 $ Mg-1), but this reflected its low costs rather than its effectiveness to reduce soil erosion. The present results confirmed that post-fire soil erosion mitigation treatments are cost-effective as long as they are applied in areas where the post-fire erosion rates exceed the tolerable erosion rate thresholds (>1 Mg-1 ha-1 y-1) and are less costly than the loss of on- and off-site values that they are targeted to protect. For this reason, the proper assessment of post-fire soil erosion risk is vital to ensure that the available financial, human and material resources are applied appropriately.


Assuntos
Incêndios , Incêndios Florestais , Humanos , Erosão do Solo , Solo , Agricultura
3.
J Environ Manage ; 320: 115766, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35933875

RESUMO

The magnitude of forest fires' impacts on the environment is directly related to the changes induced on soil physical, chemical and biological properties. Using available organic resources to rehabilitate burnt forest soils can help reduce post-fire soil fertility loss, accelerating ecosystem recovery. In the present study, the potential of four soil amendments: a mycotechnosol, a eucalypt residue mulch, dredged sediments from a freshwater lagoon and an organic-mineral biofertilizer, to improve the quality of burnt forest soils in terms of organic matter, carbon, nitrogen and phosphorus contents, was evaluated. Two experiments were set-up, one in a recently burnt eucalypt plantation and another in the laboratory using soils from the same area, to assess the effects of the amendments on soil quality, with both experiments lasting for 7 months. The effects of the amendments on nutrient leaching along the soil profile were also evaluated in the laboratory, to investigate possible negative impacts on groundwater and surface water quality. All amendments increased the organic matter and nutrient contents of burnt soils, confirming their potential for ecosystem rehabilitation. The biofertilizer, however, was found to promote nutrient losses by leaching, largely owing to its high solubility, increasing the risk of contamination of ground and surface waters. Using available organic resources to rehabilitate burnt forests as was done in the present work complies with the idea of a circular economy, being key for the sustainability of forest ecosystems.


Assuntos
Incêndios , Solo , Ecossistema , Florestas , Fósforo , Solo/química
4.
Environ Sci Pollut Res Int ; 28(37): 51733-51744, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33987727

RESUMO

Wildfires are an environmental concern due to the loss of forest area and biodiversity, but also because their role as drivers of freshwater systems contamination by metals. In this context, the fish Gambusia holbrooki was used as a model, deployed for in situ exposure in watercourses standing within a recently burnt area and further assessment of toxic effects. The fish were exposed during 4 days at four different sites: one upstream and another downstream the burnt area and two within the burnt area. Biochemical biomarkers for oxidative stress and damage were assessed. The extent of lipoperoxidative damage was monitored by quantifying malondialdehyde and DNA damage evaluated through erythrocyte nuclear abnormalities observation. Chemical analysis revealed higher metal levels within the burnt area, and exposed fish consistently showed pro-oxidative responses therein, particularly an increase of gill glutathione peroxidase and glutathione reductase activity, the records doubling compared to samples from sites in the unburnt area; also the activity of glutathione-S-transferases comparatively increased (by 2-fold in the liver) in samples from the burnt area, and malondialdehyde was produced twice as much therein and in samples downstream the burnt area reflecting oxidative damage. Consistently, the frequency of erythrocyte nuclear abnormalities was higher at sites within and downstream the burnt area. This study supports the use of sensitive oxidative stress and genotoxicity biomarkers for an early detection of potentially noxious ecological effects of wildfires runoff.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água , Incêndios Florestais , Animais , Organismos Aquáticos/metabolismo , Biomarcadores/metabolismo , Ciprinodontiformes/metabolismo , Eritrócitos/metabolismo , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
5.
Environ Pollut ; 285: 117279, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33971424

RESUMO

Wildfires are a complex environmental problem worldwide. The ashes produced during the fire bear metals and PAHs with high toxicity and environmental persistence. These are mobilized into downhill waterbodies, where they can impair water quality and human health. In this context, the present study aimed at assessing the toxicity of mimicked wildfire runoff to human skin cells, providing a first view on the human health hazardous potential of such matrices. Human keratinocytes (HaCaT) were exposed to aqueous extracts of ashes (AEA) prepared from ash deposited in the soil after wildfires burned a pine or a eucalypt forest stand. Cytotoxicity (MTT assay) and changes in cell cycle dynamics (flow cytometry) were assessed. Cell viability decreased with increasing concentrations of AEA, regardless of the ash source, the extracts preparation method (filtered or unfiltered to address the dissolved or the total fractions of contaminants, respectively) or the exposure period (24 and 48 h). The cells growth was also negatively affected by the tested AEA matrices, as evidenced by a deceleration of the progress through the cell cycle, namely from phase G0/G1 to G2. The cytotoxicity of AEA could be related to particulate and dissolved metal content, but the particles themselves may directly affect the cell membrane. Eucalypt ash was apparently more cytotoxic than pine ash due to differential ash metal burden and mobility to the water phase. The deceleration of the cell cycle can be explained by the attempt of cells to repair metal-induced DNA damage, while if this checkpoint and repair pathways are not well coordinated by metal interference, genomic instability may occur. Globally, our results trigger public health concerns since the burnt areas frequently stand in slopes of watershed that serve as recreation sites and sources of drinking water, thus promoting human exposure to wildfire-driven contamination.


Assuntos
Incêndios , Incêndios Florestais , Florestas , Humanos , Metais , Solo
6.
Sci Total Environ ; 771: 144813, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33736160

RESUMO

Wildfires are an important environmental problem in forested watersheds and can significantly alter water quality. Besides the reported ecotoxicological effects on pelagic species, the accumulation of post-fire contaminants in river sediments can also impair the benthic species. In this study, three sediment-dwelling species, Chironomus riparius, Atyaephyra desmarestii and Echinogammarus meridionalis, with different sensitivities, habitats, behaviours and/or feeding strategies, were exposed to water and sediments, in in-situ and in laboratory. Four sites were selected in a partially burnt basin (Alfusqueiro river basin), within and upstream the burnt area. The sites within the burnt area showed higher metal burden in both water and sediment, as well as changes in water physico-chemistry, consistently with the typical effects of incoming post-fire runoff. Both in-situ and laboratory exposures to water and sediments affected by the wildfire induced post-exposure feeding inhibition in the three tested macroinvertebrates. In fact, laboratory and field bioassays have produced generally consistent post-exposure feeding inhibition responses, but the most impactful response could be recognised after in-situ bioassays at the river site within the burnt area, where the species respond to the physico-chemical fluctuations during the exposure period. This comparative perspective supports the importance of using in-situ bioassays as a more realistic approach when dealing with complex and intermittent natural samples such as those affected by post-fire runoff. Overall, our results reinforce the awareness about the negative effects of wildfires on benthic biota, with significant feeding depression and consequent reduction in the available energy budget to ensure successful detoxification, growth and reproduction signalling potential trophic and functional disruption at the ecosystem level. In addition, the duality conditions of sediments as a sink and source of contaminants reinforce concerns, as the exposure of benthic organisms may persist in the long term, even after runoff income ceases due to the resuspension of contaminated sediments.


Assuntos
Chironomidae , Incêndios , Poluentes Químicos da Água , Incêndios Florestais , Animais , Ecossistema , Sedimentos Geológicos , Rios , Poluentes Químicos da Água/análise
7.
Environ Pollut ; 267: 115433, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32866871

RESUMO

Forests in Mediterranean Europe including Portugal are highly susceptible to wildfires. Freshwaters are often exposed to post-wildfire contamination that contains several toxic substances, which may impose risk to freshwater organisms and ecosystem functions. However, knowledge on the impacts of post-wildfire runoffs from different origins on freshwater biota is scarce. In forest streams, invertebrate shredders have a major contribution to aquatic detrital-based food webs, by translocating energy and nutrients from plant-litter to higher trophic levels. We investigated the leaf consumption behaviour and the responses of oxidative and neuronal stress enzymatic biomarkers in the freshwater invertebrate shredder Allogamus ligonifer after short-term exposure (96 h) to post-wildfire runoff samples from Pinus and Eucalyptus plantation forests and stream water from a burnt catchment in Portugal. Chemical analyses indicated the presence of various metals and PAHs at considerable concentrations in all samples, although the levels were higher in the runoff samples from forests than in the stream water. The shredding activity was severely inhibited by exposure to increased concentrations of post-wildfire runoff samples from both forests. The dose-response patterns of enzymatic biomarkers suggest oxidative and neuronal stress in the shredders upon exposure to increasing concentrations of post-wildfire runoffs. The impacts were more pronounced for the runoffs from the burnt forests. Moreover, the response patterns suggest that the energy from the feeding activity of shredders might have contributed to alleviate the stress in A. ligonifer. Overall, the outcomes suggest that the post-wildfire contamination can induce sublethal effects on invertebrate shredders with impacts on key ecological processes in streams.


Assuntos
Incêndios Florestais , Animais , Ecossistema , Europa (Continente) , Florestas , Invertebrados , Portugal , Rios
8.
Aquat Toxicol ; 227: 105587, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32841885

RESUMO

Among the various environmental disturbances caused by wildfires, their impacts within burnt areas and on the downhill aquatic ecosystems has been receiving increased attention. Post-fire rainfalls and subsequent runoffs play an important role in transporting ash and soil to aquatic systems within the burnt areas. These runoffs can be a diffuse source of toxic substances such as metals. The present work aims at assessing the effects of ash-loaded runoff on feeding rates of three representative aquatic invertebrates (Daphnia magna, Corbicula fluminea and Atyaephyra desmarestii) and the mosquitofish, Gambusia holbrooki, through post-exposure feeding inhibition bioassays carried out in-situ and in the laboratory using water collected from the experimental field sites. Four sites were selected in a partially burnt basin for bioassay deployment and sample collection: one site upstream of the burnt area (RUS); three sites receiving runoff directly from the burnt area, one immediately downstream of the burnt area (RDS) and two in permanent tributary streams within the burnt area (BS1 and BS2). The in-situ exposure lasted four days and began following the first post-fire major rain events. At sites affected by the wildfire, post-exposure feeding rates for D. magna, A. desmarestii and G. holbrooki were lower, which is consistent with the highest levels of metals found at these sites compared to the unaffected site, although the individual concentrations of each metal were generally below corresponding ecological safety benchmarks. Thus, interactions between metals and/or between metals and other environmental parameters certainly played a role in modulating the ecotoxic effects of the runoffs; this was further supported by a Toxic Units Summation exercise. Even if direct causal links between the ecotoxicological effects observed in D. magna, A. desmarestii and G. holbrooki and the physicochemical parameters of the water samples could not be established, the results suggest an important role of major and trace elements in explaining post-exposure feeding rate variation.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Cinza de Carvão/toxicidade , Comportamento Alimentar/efeitos dos fármacos , Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade , Incêndios Florestais , Animais , Organismos Aquáticos/fisiologia , Bioensaio , Corbicula/efeitos dos fármacos , Ciprinodontiformes/fisiologia , Daphnia/efeitos dos fármacos , Ecossistema , Ecotoxicologia , Água Doce/química , Modelos Teóricos , Portugal , Oligoelementos/toxicidade
9.
Sci Total Environ ; 736: 139477, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32485369

RESUMO

Future climate for the Mediterranean climatic region is expected to bring an increase in temperatures, decrease in the precipitation quantity and shifts in the seasonal precipitation pattern. Although the impacts of climate change on water resources have been relatively well explored for the Mediterranean climatic region, the specific consequences for reservoirs and, in particular, water availability and irrigation issues have been less studied. The objective of this work is two-fold: (i) to assess the impacts of future climate changes on water resources availability, quality (focusing on phosphorus loads as this is the limiting nutrient for eutrophication) and irrigation needs for two multipurpose reservoirs in southern Portugal; (ii) to suggest climate change adaptation strategies, especially for the agricultural sector. To this end, the SWAT model was first calibrated against existing data on reservoir inflows as well as phosphorus loads. Then, SWAT was run with climate derived EURO-CORDEX models (RCA4/RACMO22E) for four periods (1970-2000, 2010-2040, 2040-2070 and 2070-2100). Water availability was analysed using the Water Exploitation Index (WEI) that was calculated for both reservoirs combining changes of inflows and irrigation requirements. The results indicated that climate change will negatively impact water availability in both reservoirs, especially under RCP8.5. In the case of the Monte Novo reservoir, future domestic water supply could be constrained by water quality problems related with phosphorus loads. For Vigia reservoir, the high water exploitation will lead to water scarcity problems, mainly as this reservoir on present-day conditions is restrictive on irrigation requirements. Adaptation strategies such as the implementation of high end technology (e.g. soil moisture and plant water stress probes, satellite imagery and drones to evaluate water stress - NDVI) as well as the renewal of the irrigation network and adequate crop selection can help attenuating the effects of climate change on the water resources in this region.

10.
Ecotoxicol Environ Saf ; 194: 110361, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32126411

RESUMO

Mediterranean forests are highly susceptible to wildfires, which can cause several impacts not only within burnt areas but also on downstream aquatic ecosystems. The ashes' washout from burnt areas by surface runoff can be a diffuse source of toxic substances, such as metals, when reaching the nearby aquatic systems, and can be noxious to aquatic organisms. The present work aimed at assessing the ecotoxicological effects of post-fire contamination on two aquatic producers (the microalgae Raphidocelis subcapitata and the macrophyte Lemna minor) through in-situ bioassays, validating the obtained results with the outcomes of laboratory bioassays with surface water collected simultaneously. Four distinct sites were selected in a basin partially burnt (Ceira river basin; Coimbra district, Portugal) for bioassay deployment: one site upstream the burnt area in the Ceira river (RUS); three sites located under the influence of the burnt area, one immediately downstream of the burnt area in the Ceira river (RDS) and the other two in tributary streams within the burnt area (BS1 and BS2). The in-situ bioassays lasted for 13 days and began following the first post-fire major rain events. Results showed that the microalgae growth rate was able to distinguish the three sites within and downstream of the burnt area (BS1, BS2, RDS) from the site upstream (RUS). By contrast, the macrophytes growth rate only allowed to differentiate between the sites within the burnt area (BS1 and BS2) and those up- and downstream of the burnt area (RUS and RDS). The in-situ results for both species were corroborated with the results of the laboratory experiments, supporting the use of laboratory surrogates for a screening assessment of wildfire impacts in aquatic ecosystems. Direct causal relationships between the observed ecotoxicological effects on R. subcapitata and L. minor and the physical-chemical parameters of the water samples were difficult to establish, although the results suggest (i) a role of differential major and trace metal load in explaining species growth variation; (ii) interaction between metals and/or between metals and other field parameters are likely to modulate the biological responses to the challenges deriving from wildfire runoff.


Assuntos
Organismos Aquáticos/fisiologia , Bioensaio , Monitoramento Ambiental/métodos , Incêndios Florestais , Araceae/efeitos dos fármacos , Ecossistema , Ecotoxicologia , Incêndios , Florestas , Água Doce/química , Metais/farmacologia , Portugal , Chuva , Rios/química , Oligoelementos/farmacologia
11.
Sci Total Environ ; 708: 135014, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31759705

RESUMO

Carbon dioxide (CO2) efflux from soil represents one of the biggest ecosystem carbon (C) fluxes and high-magnitude pulses caused by rainfall make a substantial contribution to the overall C emissions. It is widely accepted that the drier the soil, the larger the CO2 pulses will be, but this notion has never been tested for water-repellent soils. Soil water repellency (SWR) is a common feature of many soils and is especially prominent after dry periods or fires. An important unanswered question is to what degree SWR affects common assumptions about soil CO2 dynamics. To address this, our study investigates, for the first time, the effect of SWR on the CO2 pulse upon wetting for water-repellent soils from recently burned forest sites. CO2 efflux measurements in response to simulated wetting were conducted both under laboratory and in situ conditions. Experiments were conducted on severely and extremely water-repellent soils, with a wettable scenario simulated by adding a wetting agent to the water. CO2 efflux upon rewetting was significantly lower in the water-repellent scenarios. Under laboratory conditions, CO2 pulse was up to four times lower under the water-repellent scenario as a result of limited wetting, with 70% of applied water draining rapidly via preferential flow paths, leaving much of the soil dry. We suggest that the predominant cause of the lower CO2 pulse in water-repellent soils was the smaller volume of pores in which the CO2 was replaced by infiltrating water, compared to wettable soil. This study shows that SWR should be considered as an important factor when measuring or predicting the CO2 flush upon rewetting of dry soils. Although this study focused mainly on short-term effects of rewetting on CO2 fluxes, the overall implications of SWR on physical changes in soil conditions can be long lasting, with overall larger consequences for C dynamics.

12.
Sci Total Environ ; 692: 691-700, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31539977

RESUMO

In the last decades, land-use changes have made Mediterranean forests highly susceptible to wildfires, which can cause several impacts not only on burnt areas, but also on adjacent aquatic ecosystems. Post-fire runoff from burnt areas may transport toxic substances to streams by surface runoff, including polycyclic aromatic hydrocarbons (PAHs) and metals, which can be noxious to aquatic organisms. Impacts on aquatic ecosystems can be related to fire severity, forest type and the exposure period; however, these factors have not been investigated in tandem. Here, we used the stream detrital system to determine the impacts of post-fire runoffs and stream water from a burnt catchment on trophic interactions between stream microbial communities and invertebrate shredders involved in leaf litter decomposition. Three distinct types of samples were collected from a burnt catchment: post-fire runoffs from high severity wildfires in Pinus and Eucalyptus forests, and stream water. Microbial decomposer communities (fungi and bacteria) and the invertebrate shredder Allogamus ligonifer were exposed for 10 and 20 days to increasing concentrations (0, 50, 75 and 100%) of runoff extracts. Our results showed that post-fire runoffs from high severity wildfires reduced microbially-driven leaf litter decomposition (up to 79%), invertebrate feeding (up to 75%), fungal biomass (up to 39%) and altered community composition; effects were more severe at the longer exposure time. The impacts varied with the runoff source and were related to the chemical composition in metals and total PAHs. This study emphasizes the importance of assessing the indirect effects of wildfires taking into account the effects of the runoff source, load and exposure time on freshwater biota and their ecological functions. Therefore, best forest management practices should be applied to minimize post-fire runoffs reaching aquatic ecosystems and to reduce the effects of these extreme events on freshwater biodiversity and ecosystem functioning.


Assuntos
Cadeia Alimentar , Agricultura Florestal , Água Doce/química , Microbiota , Movimentos da Água , Incêndios Florestais , Eucalyptus/crescimento & desenvolvimento , Florestas , Pinus/crescimento & desenvolvimento , Portugal , Fatores de Tempo
13.
Ecotoxicol Environ Saf ; 148: 384-392, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29096265

RESUMO

This work relied on the use microcosms to evaluate the individual and the combined effects of different levels of copper sulfate (0.0, 0.013, 0.064 and 0.318mg Cu L-1) - a fungicide commonly exceeding allowable thresholds in agricultural areas - and a range of water temperature increase scenarios (15, 20 and 25°C) on freshwater species belonging to different functional groups. Hence, the growth inhibition of primary producers (the microalgae Raphidocelis subcapitata and the macrophyte Lemna minor), as well as the survival and feeding behavior of a shredder species (the Trichoptera Schizopelex sp.) were evaluated. The results revealed that copper was toxic to primary producers growth, as well as shredders growth and survival, being the growth of L. minor particularly affected. Higher water temperatures had generally enhanced the growth of primary producers under non-contaminated (microalgae and macrophytes) or low-contaminated (macrophytes) conditions. Despite the tendency for a more pronounced toxicity of copper under increasing water temperatures, a significant interaction between the two factors was only observed for microalgae. Since the test organisms represent relevant functional groups for sustaining freshwater systems functions, the present results may raise some concerns on the impacts caused by possible future climate change scenarios in aquatic habitats chronically exposed to the frequent or intensive use of the fungicide copper sulfate.


Assuntos
Mudança Climática , Sulfato de Cobre/toxicidade , Água Doce , Fungicidas Industriais/toxicidade , Temperatura , Poluentes Químicos da Água/toxicidade , Clorófitas/efeitos dos fármacos , Ecossistema , Comportamento Alimentar/efeitos dos fármacos
14.
Sci Total Environ ; 584-585: 219-233, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28152459

RESUMO

The impacts of climate and associated socio-economic changes on water availability, including supply and demand, quality, and storage volume, were evaluated for the Vale do Gaio reservoir in southern Portugal, located in a dry Mediterranean climate and already under drought stress. The SWAT model was applied with 6 scenarios for 2071-2100, involving two storylines (A1B and B1) with individual changes in climate (-9% rainfall, increasing in winter by +28 to +30%), socio-economic conditions (an increase in irrigation demand by 11%, and a replacement of cereals and pastures by sunflower), and a combination of both. Most future scenarios resulted in lower water availability, due to lower supply (-19 to -27%) combined with higher irrigation demand (+3 to +21%). This resulted in more years with limited irrigation supplies (presently: 28%; scenarios: 37 to 43%), although limitations were mitigated by lower losses to excess discharge. Land-use changes also decreased quality by increasing P concentrations (+29 to +93%). Impacts were more severe in scenario A1B than in B1, and in combined changes than in climate or socio-economic changes only. Water availability was resilient to climate change, as impacts led only to a moderate aggravation of present-day conditions. Lower future water availability could be addressed by supply and demand management strategies and, in the most extreme scenario, by water transfers from regional water reserves; water quality issues could be addressed through land-use policies. Results also highlighted the importance of taking the characteristics of water supply systems into account when designing adaptation measures for future changes.


Assuntos
Irrigação Agrícola , Mudança Climática , Abastecimento de Água , Portugal , Fatores Socioeconômicos , Água
15.
Sci Total Environ ; 581-582: 305-313, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28088544

RESUMO

The number of wildfires has markedly increased in Mediterranean Europe, including in Portugal. Wildfires are environmentally concerning, not only due to the loss of biodiversity and forest area, but also as a consequence of environmental contamination by specific compounds including metals and polycyclic aromatic compounds (PAHs). These contaminants, mostly bound to ashes, can reach downstream water bodies, namely through surface runoff, being ultimately dispersed by vast areas and contacting with aquatic biota. Being toxicologically noteworthy, the potential toxic outcomes of the input of such chemicals across the aquatic compartment must be characterized. In this context, the present study used a biomarker-based approach to find early-warning signals of toxicity triggered by the exposure of the mosquitofish, Gambusia holbrooki, to affected aqueous runoff and stream water samples collected from a forest burnt area. The chemical analysis revealed concerning levels of metals and polycyclic aromatic hydrocarbons in both runoff and stream water samples. Biological responses elicited by the collected samples showed the occurrence of pro-oxidative modifications, specifically driven by enzymatic forms involved in the metabolism of glutathione. Despite these effects, no further signs of involvement of metals and PAHs were elicited in terms of neurotoxicity. The overall set of data implicates chemicals resulting from wildfires in clear deleterious effects in exposed fish.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água/toxicidade , Incêndios Florestais , Animais , Biomarcadores/análise , Monitoramento Ambiental , Metais Pesados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Portugal
16.
Sci Total Environ ; 573: 1242-1254, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27156121

RESUMO

Mulching is an effective post-fire soil erosion mitigation treatment. Experiments with forest residue mulch have demonstrated that it increased ground cover to 70% and reduced runoff and soil loss at small spatial scales and for short post-fire periods. However, no studies have systematically assessed the joint effects of scale, time since burning, and mulching on runoff, soil loss, and organic matter loss. The objective of this study was to evaluate the effects of scale and forest residue mulch using 0.25m2 micro-plots and 100m2 slope-scale plots in a burnt eucalypt plantation in central Portugal. We assessed the underlying processes involved in the post-fire hydrologic and erosive responses, particularly the effects of soil moisture and soil water repellency. Runoff amount in the micro-plots was more than ten-fold the runoff in the larger slope-scale plots in the first year and decreased to eight-fold in the third post-fire year. Soil losses in the micro-plots were initially about twice the values in the slope-scale plots and this ratio increased over time. The mulch greatly reduced the cumulative soil loss measured in the untreated slope-scale plots (616gm-2) by 91% during the five post-fire years. The implications are that applying forest residue mulch immediately after a wildfire can reduce soil losses at spatial scales of interest to land managers throughout the expected post-fire window of disturbance, and that mulching resulted in a substantial relative gain in soil organic matter.

17.
Sci Total Environ ; 572: 1363-1376, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26875605

RESUMO

Wildfires can play an important role in the environmental distribution of major and trace elements, including through their mobilization by fire-induced runoff and associated transport of soil and ash particles. In particular, fire-induced inputs of these elements into the environment are relevant due to their toxicity and environmental persistence. This study aimed to evaluate the role of wildfire and time-since-fire on the redistribution of major and trace elements, which is a topic poorly documented. To this end, levels of V, Mn, Co, Ni, Cu, Cd and Pb were assessed in soil and ash samples collected immediately following a wildfire in north-central Portugal as well as 4 (after the first post-fire rainfall events), 8 and 15months later. The role of forest type was determined by sampling burnt eucalypt and pine plantations. The main findings of this study were the following: (1) levels of V, Mn, Ni, Cd and Pb were consistently higher in the burnt than unburnt soils, while levels of Co and Cu revealed no differences; (2) time-since-fire affected major and trace elements in three different ways: concentrations of Mn and Cd declined abruptly after the first rainfall events while levels of V, Co and Ni increased during the first 8months and levels of Cu and Pb hardly changed during the study period; (3) all studied elements revealed peak concentrations in the ashes immediately after the fire, which then declined sharply four months later; (4) levels of Co and Ni soils and ashes were higher at the pine plantations than at the eucalypt plantations. This study highlighted the role of wildfire in enhancing levels of major and trace elements in ashes and topsoil of forest plantations and their mobilization within the first year after fire, pointing towards recently burnt forest areas as a potential source of environmental contamination.


Assuntos
Eucalyptus/química , Incêndios , Pinus/química , Poluentes do Solo/análise , Solo/química , Oligoelementos/análise , Monitoramento Ambiental , Agricultura Florestal , Florestas , Portugal
18.
Environ Sci Process Impacts ; 16(6): 1434-44, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24715158

RESUMO

In order to maintain and improve the water quality in European rivers, the Water Framework Directive (WFD) requires an integrated approach for assessing water quality in a river basin. Although the WFD aims at a holistic understanding of ecosystem functioning, it does not explicitly establish cause-effect relationships between stressors and changes in aquatic communities. To overcome this limitation, the present study combines the typical WFD physicochemical and biological approaches with an ecotoxicological approach. The main goal was to assess river water quality through an integrated manner, while identifying potential risk situations for aquatic communities in the Cértima river basin (Portugal). To achieve this goal, surface water samples and macroinvertebrate specimens were collected under contrasting hydrological conditions (autumn and spring seasons) at three river sites exposed to distinct pollution levels defined according to the WFD (low, moderate and highly polluted). Physicochemical water quality status was defined according to the Portuguese classification for multipurpose surface waters, whereas biological water quality was assessed in accordance with the South Invertebrate Portuguese Index. Ecotoxicological assays included four standard species, a bacterial species (Vibrio fischeri), a unicellular algae (Pseudokirchneriella subcapitata), a macrophyte (Lemna minor) and a crustacean (Daphnia magna), which were exposed to different river water concentrations. The study sites represented a clear and pronounced gradient of pollution, from the unpolluted reference site to the sites under moderate to high anthropogenic pressure. In the latter sites, clear signs of organic pollution were found, such as low dissolved oxygen concentrations, high nutrient loads and prevalence of highly tolerant macroinvertebrate species. Despite the evident signs of pollution, no clear evidence of toxicity was observed in test species, suggesting that ecotoxicological assays using standard laboratory species and methodologies might not be suitable for assessing the effects of organic pollution. Nevertheless, the integrated methodology presented in this study provided important additional information on the Cértima's water quality status. Its wider use could contribute to a more comprehensive assessment of the effects of anthropogenic pollution on the status and functioning of aquatic ecosystems under the WFD and, thereby, improve the scientific foundations for the sustainable future management of surface water resources.


Assuntos
Monitoramento Ambiental/métodos , Rios/química , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos/efeitos dos fármacos , Ecotoxicologia , Invertebrados , Portugal , Poluentes Químicos da Água/toxicidade
19.
Sci Total Environ ; 468-469: 464-74, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24055663

RESUMO

For several years now, forest fires have been known to increase overland flow and soil erosion. However, mitigation of these effects has been little studied, especially outside the USA. This study aimed to quantify the effectiveness of two so-called emergency treatments to reduce post-fire runoff and soil losses at the microplot scale in a eucalyptus plantation in north-central Portugal. The treatments involved the application of chopped eucalyptus bark mulch at a rate of 10-12 Mg ha(-1), and surface application of a dry, granular, anionic polyacrylamide (PAM) at a rate of 50 kg ha(-1). During the first year after a wildfire in 2010, 1419 mm of rainfall produced, on average, 785 mm of overland flow in the untreated plots and 8.4 Mg ha(-1) of soil losses. Mulching reduced these two figures significantly, by an average 52 and 93%, respectively. In contrast, the PAM-treated plots did not differ from the control plots, despite slightly lower runoff but higher soil erosion figures. When compared to the control plots, mean key factors for runoff and soil erosion were different in the case of the mulched but not the PAM plots. Notably, the plots on the lower half of the slope registered bigger runoff and erosion figures than those on the upper half of the slope. This could be explained by differences in fire intensity and, ultimately, in pre-fire standing biomass.


Assuntos
Incêndios , Solo , Movimentos da Água , Resinas Acrílicas
20.
J Environ Monit ; 12(1): 189-99, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20082013

RESUMO

The Cértima River is the principal source of water flowing into the Pateira de Fermentelos, which is one of the largest natural lakes of the Iberian Peninsula and has elevated conservation value. This study aims at a more comprehensive understanding of the spatial pattern in water quality and, thus, pollution problems in and especially upstream of the Pateira, including a comparison with a prior study in 2003. To this end, surface water samples were collected, in May 2007, at 29 sites covering the basin's four main types of water bodies, and analysed for electrical conductivity, dissolved oxygen, biochemical oxygen demand, total suspended solids, various nitrogen species, orthophosphate and chlorophyll a. The results confirmed the existence of marked pollution along the middle section of the Cértima's main course, which can be attributed to wastewater discharges of urban and animal husbandry origin in particular. This represents an important eutrophication risk to the Pateira. Current legislation and water management does not appear to tackle this risk in an entirely satisfactory manner, since the spatial patterns as well as actual values of key physic-chemical parameters do not appear to have changed markedly between 2003 and 2007. Amongst the various parameters, biochemical oxygen demand stands out for frequently exceeding the legal water quality standards. The type of water body proved helpful to explain part of the variation in some of the parameters. This includes clear differences in electrical conductivity between the right- and left-bank tributaries, illustrating well the heterogeneous and complex character of the Cértima basin.


Assuntos
Rios/química , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Clorofila/metabolismo , Clorofila A , Monitoramento Ambiental/normas , Geografia , Nitrogênio/análise , Oxigênio/análise , Fosfatos/análise , Portugal , Medição de Risco , Poluentes Químicos da Água/metabolismo , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...